# Statistical Prediction of Environmental Gamma Radiation Doses, in Perak, Malaysia

(Ramalan Statistik Dos Sinar Gama Sekitaran, Perak, Malaysia)

ZALINA RAHMAT\*, ISMAIL BAHARI, MUHAMMAD SAMUDI YASIR, REDZUWAN YAHAYA & AMRAN AB. MAJID

#### ABSTRACT

The concentrations of Naturally Occurring Radioactive Material (NORM) and their corresponding terrestrial gamma radiation have been shown to be associated with certain lithology and soil types. A possible relationships among gamma radiation levels, and the lithology and soil types make it possible to predict ionizing radiation level of an area that cannot be directly measured. A study was carried out to statistically predict and validate environmental gamma radiation dose rates based on actual field measurements using a sodium iodide detector. Results obtained showed that the predicted dose rate  $(D_p)$  may be determined using a multiple correlation regression equation,  $D_p = 0.35D_L + 0.82$   $D_s - 0.02$ , that integrates dose rates contributed by different lithological structures  $(D_L)$  and soil types  $(D_s)$ . Statistical analysis on 32 different lithology and soil type combinations showed that more than 50% of the predicted data were not significantly different from the data measured in the field. A predicted isodose map was subsequently plotted base on 4 dose rate classes ranging from 0.1 - 0.3  $\mu$ Sv  $h^{-1}$ .

Keywords: GIS; isodose map; Malaysia; NORM

#### ABSTRAK

Kepekatan bahan radioaktif tabii (NORM) yang terdapat dalam tanih dan aras gama terestrial berkaitan dipengaruhi oleh litologi dan jenis tanih. Kemungkinan wujudnya perhubungan antara aras sinar gama dan litologi serta jenis tanih ini memungkinkan ia digunakan untuk meramal aras sinaran mengion sesuatu kawasan yang tidak boleh diukur aras sinarannya secara langsung. Satu kajian telah dilakukan untuk meramal dan mengesahkan secara statistik kadar dos sinar gama sekitaran berdasarkan bilangan pengukuran sebenar di lapangan dengan menggunakan pengesan natrium iodid. Hasil kajian mendapati bahawa kadar dos ramalan ( $D_p$ ) boleh ditentukan melalui persamaan regresi korelasi berganda,  $D_p = 0.35D_L + 0.82$   $D_s - 0.02$ , yang menyepadukan kadar dos sumbangan struktur litologi ( $D_L$ ) dan jenis tanih ( $D_s$ ) yang berlainan. Analisis statistik terhadap 32 kombinasi litologi dan jenis tanih yang berlainan mendapati lebih daripada 50% data ramalan adalah tidak berbeza secara signifikan dengan data yang diukur di lapangan. Sebuah peta isodos ramalan telah dibangunkan berdasarkan 4 kelas kadar dos antara 0.1 - 0.3  $\mu$ Sv  $h^{-1}$ .

Kata kunci: GIS; Malaysia; NORM; peta isodos

#### INTRODUCTION

Tin mining areas have been known to have higher concentrations of naturally occurring radioactive materials (NORM) as compared to non-mining area. The mining of tin and processing of *amang* (a local name for tin tailing) for valuable minerals, has stirred occupational and environmental radiological concerns due to the technological enhancement of naturally occurring radioactive materials (Azlina et al. 2003; Khairuddin et al. 2000). Large areas of former tin mining land are now being rejuvenated and developed for housing, industries and recreational areas. Such activities have caused concern on radiological risk to its occupants. Ramli et al. (2003) have also shown that different lithology and soil types yielded different levels of external gamma radiation.

The first step in estimating environmental radiological risk is to map out the dose rates distribution of the areas of interest. One method of mapping is to carry out in situ measurements. Although accurate and reliable, such traditional method of estimating environmental risk by measuring radiation levels at the area of interest are time consuming, costly and in some cases the areas are inaccessible for measurement. Ramli et al. (2003) proposed predicting external gamma radiation dose rates by averaging the means of radiation dose rates associated with geological structure and soil types in Kota Tinggi, Johor. Ismail et al. (2004) made a similar attempt to validate Ramli et al. (2003) finding using different lithology and soil combinations found in the districts of Kinta and Batang Padang, Perak but found that the direct 1:1 correlation between lithological structures - soil types combination

and predicted dose rate proposed by Ramli et al. (2003) does not hold true for all combinations.

This study hypothesized that dose rates associated with lithological structures and soil types do not necessarily contribute equally towards the predicted dose rates. Consequently a multiple correlation regression integrating both dose rates associated with different lithological structures and soil types must be considered together to predict the overall environmental gamma radiation dose rates. This objective of this study was to propose and validate the use of statistical approach integrated with visualization technique and spatial analysis in GIS environments in mapping the environmental gamma radiation isodose map of Perak.

## **METHOD**

The area map of Perak was divided into 1 km<sup>2</sup> grid lines. The points of intersections of the 1 km<sup>2</sup> grid line represent the number of proposed (population) required to develop an isodose map. These areas consist of different soil types with varying underlying lithological structures. Figures 1 and 2 show the lithology and soil types of Perak.

External terrestrial gamma dose rates were measured using a sodium iodide detector (Ludlum Measurement Inc. Model 4421-2). Measurements were made about 5 cm from the surface of the ground. Five readings within an area of 1 m² were taken at each sampling location and their values averaged. The numbers of areas measured were largely

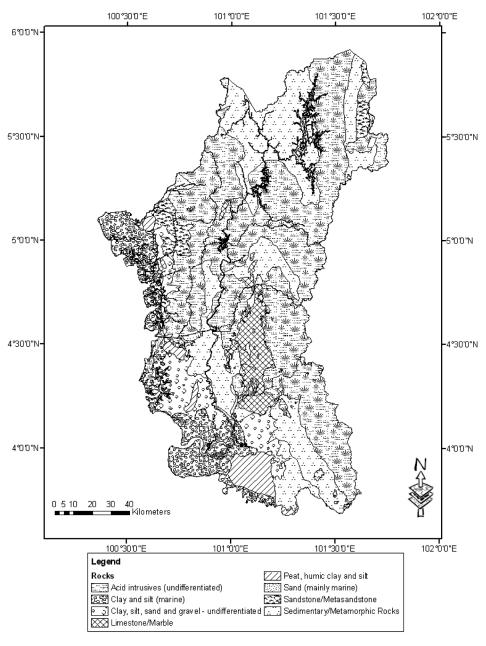



FIGURE 1. Lithological structures of Perak



FIGURE 2. Soil types of Perak

determined by their accessibility, and their locations were pinpointed using GeoXM Explorer (Trimble Navigation Ltd) with an accuracy of 1-5 m.

A statistical method was used to predict gamma radiation dose rates based on a significantly represented number of actual dose rates measurements of the area underlying lithology and soil types (Ismail et al. 2004). The predicted dose rate  $(D_{\rm p})$  was estimated based on an equation derived from a multiple correlation regression of

the actual mean dose rates for different lithology ( $D_{\rm L}$ ) and soil types ( $D_{\rm c}$ ).

The environmental radiation isodose map of Perak was plotted using the integrated visualization technique and spatial analysis in GIS environments. Every extrapolated dose rate point on the map was calculated by averaging a total of 15 adjacent radiation dose rate readings points using Inverse Density Weighted (IDW) interpolation technique in spatial analysis. A predicted isodose map

drawn was based on a proposed 4 dose rate classes, ranging from  $0.10 - 0.30 \mu Sv hr^{-1}$ .

## RESULTS AND DISCUSSION

A significant number of actual dose rates measurement of areas with different underlying lithology and soil types were made. The dose rate readings for each soil type and lithological structure were averaged (Table 1). A multiple correlation regression carried out on the actual mean dose rates for different lithology  $(D_1)$  and soil types  $(D_2)$  gave

a mathematical equation for predicted dose rate  $(D_{\rm p})$ , i.e.  $D_{\rm p}=0.35~D_{\rm L}+0.82~D_{\rm S}-0.02$ , with an  $r^2=0.736$ . Such mathematical relationship suggested that  $D_{\rm L}$  and  $D_{\rm S}$  does not contribute equally towards the overall calculation of predicted dose rates as suggested by Ramli et al. (2003).  $D_{\rm L}$  and  $D_{\rm S}$  contributed differently towards the overall predicted dose rates,  $D_{\rm p}$ .

Table 1 shows the predicted dose rates  $(D_p)$  based on all the different lithological structures and soil types combinations present in the state of Perak. Data obtained showed that a combination of acid intrusives and Steepland

TABLE 1. Average measured radiation dose rates of different lithological structures and soil types, and the predicted dose rates ( $\mu$ Sv h<sup>-1</sup>) of Perak calculated based on different lithological and soil types combinations

| N  | 1.0.1                         | 0.7.        | Dose Rates (μSv h <sup>-1</sup> ) |                            |                            |  |
|----|-------------------------------|-------------|-----------------------------------|----------------------------|----------------------------|--|
| No | Lithology                     | Soil types  | $D_L$                             | $D_{\scriptscriptstyle S}$ | $D_p$                      |  |
|    |                               |             | (Average value for lithology)     | (Average value for soil)   | (Predicted using equation) |  |
| 1  | Acid Intrusives               | MLD         | 0.266                             | 0.182                      | 0.218                      |  |
| 2  | Acid Intrusives               | RGM-BTG     | 0.266                             | 0.271                      | 0.291                      |  |
| 3  | Acid Intrusives               | SDG-BGR-MUN | 0.266                             | 0.142                      | 0.186                      |  |
| 4  | Acid Intrusives               | STP         | 0.266                             | 0.276                      | 0.295                      |  |
| 5  | Acid Intrusives               | TMG-AKB-LAA | 0.266                             | 0.252                      | 0.276                      |  |
| 6  | Clay & Silt (marine)          | BRH-OCM     | 0.204                             | 0.198                      | 0.210                      |  |
| 7  | Clay & Silt (marine)          | KNJ         | 0.204                             | 0.198                      | 0.210                      |  |
| 8  | Clay & Silt (marine)          | OCM         | 0.204                             | 0.265                      | 0.264                      |  |
| 9  | Clay & Silt (marine)          | SLR-KGG     | 0.204                             | 0.156                      | 0.176                      |  |
| 10 | Clay & Silt (marine)          | SMA-SWN-MNK | 0.204                             | 0.195                      | 0.207                      |  |
| 11 | Clay & Silt (marine)          | TMG-AKB-LAA | 0.204                             | 0.252                      | 0.254                      |  |
| 12 | Clay, silt, sand & gravel     | HYD-LUS     | 0.220                             | 0.175                      | 0.197                      |  |
| 13 | Clay, silt, sand & gravel     | PET         | 0.220                             | 0.114                      | 0.147                      |  |
| 14 | Clay, silt, sand & gravel     | SMA-SWN-MNK | 0.220                             | 0.195                      | 0.213                      |  |
| 15 | Clay, silt, sand & gravel     | TMG-AKB-LAA | 0.220                             | 0.252                      | 0.260                      |  |
| 16 | Clay, silt, sand & gravel     | ULD         | 0.220                             | 0.236                      | 0.247                      |  |
| 17 | Limestone/Marble              | HYD-LUS     | 0.174                             | 0.175                      | 0.181                      |  |
| 18 | Limestone/Marble              | MLD         | 0.174                             | 0.182                      | 0.186                      |  |
| 19 | Limestone/Marble              | ULD         | 0.174                             | 0.236                      | 0.230                      |  |
| 20 | Peat, humic clay & silt       | BRH-OCM     | 0.094                             | 0.198                      | 0.171                      |  |
| 21 | Peat, humic clay & silt       | PET         | 0.094                             | 0.114                      | 0.102                      |  |
| 22 | Sand (mainly marine)          | KNJ         | 0.262                             | 0.237                      | 0.262                      |  |
| 23 | Sand (mainly marine)          | RDU-RSL     | 0.262                             | 0.223                      | 0.250                      |  |
| 24 | Sandstone/Metasandstone       | RGM-BTG     | 0.226                             | 0.271                      | 0.277                      |  |
| 25 | Sandstone/Metasandstone       | SDG-BGR-MUN | 0.226                             | 0.142                      | 0.171                      |  |
| 26 | Sandstone/Metasandstone       | TMG-AKB-LAA | 0.226                             | 0.252                      | 0.262                      |  |
| 27 | Sedimentary/Metamorphic Rocks | CHN         | 0.145                             | 0.160                      | 0.158                      |  |
| 28 | Sedimentary/Metamorphic Rocks | HYD-LUS     | 0.145                             | 0.175                      | 0.170                      |  |
| 29 | Sedimentary/Metamorphic Rocks | SDG-BGR-MUN | 0.145                             | 0.142                      | 0.143                      |  |
| 30 | Sedimentary/Metamorphic Rocks | SMA-SWN-MNK | 0.145                             | 0.195                      | 0.187                      |  |
| 31 | Sedimentary/Metamorphic Rocks | TMG-AKB-LAA | 0.145                             | 0.252                      | 0.233                      |  |
| 32 | Sedimentary/Metamorphic Rocks | WATER       | 0.145                             | 0.108                      | 0.116                      |  |

Legend: Soil types;

Briah-Organic Clay and Muck RGM-BTG BRH-OCM Rengam-Bukit Temiang Rengam-Kala RGM-KLA Chenian HYD-LUS SDG-BGR-MUN Holyrood-Lunas Serdang-Bungor-Munchong KNJ Kranji SDG-KDH Serdang-Kedah Langkawi SLR-KGG Selangor-Kangkong STP Mined Land Steepland

MUN-SDG : Munchong-Serdang TMG-AKB-LAA : Telemong-Akob-Local Alluvium OCM : Organic Clay and Muck ULD : Urban Land PET : Peat WATER : Water

RDU-RSL : Rudua-Rusila

(STP) yielded the highest dose rate. For lithology types, acid intrusives yielded the highest dose rate while peat, humic clay and silt yielded the lowest dose rate. For soil types, Steepland yielded the highest dose rate while PET yielded the lowest dose rate.

The validity of the multiple correlation regression equation,  $D_{\rm p}=0.35~D_{\rm L}+0.82~D_{\rm S}-0.02,~r^2=0.736$  in predicting environmental gamma radiation was tested using t-test (Table 2). Results of t-test between actual dose rates (measured in the field) and their predicted values showed that 56% of the combinations were not significantly different at p<0.05.

Based on the validity of equation to predict dose rate and with comprehensive statistical analysis of spatio-temporal data, an isodose rates map of the environmental gamma radiation rates was produced (Figure 3). The predicted dose rates region were classified into 4 dose rates classes, ranging from  $0.1-0.3~\mu Sv~hr^{-1}$ . Table 3 shows the area size covered by four categories of radiation dose rates. Dose rates between  $0.25-0.3~\mu Sv~hr^{-1}$  cover the biggest

area (i.e. 58.5 % of the total state of Perak). Only 6% of the area is in the category between  $0.10 - 0.15 \,\mu\text{Sv} \,\text{hr}^{-1}$ .

Using a direct 1:1 measured dose rate to predicted dose rate conversion, Ramli et al. (2003) reported that radiation levels in Kota Tinggi district, Johor were between 20 - 270 nGy hr<sup>-1</sup> which is equivalent to 0.01 - 0.19 μSv hr<sup>-1</sup> (using conversion factor of 0.7 Sv/Gy (UNSCEAR 2000)). The environmental external gamma radiation dose rates in Kota Tinggi, Johor were relatively lower than that observed in Perak. Such differences may be attributed to the different set of lithology and soil combinations and the presence of tin and amang processing plants in the current study area. However, Omar and Hassan (2002) reported that the radiation dose rates in Langkawi Island, Kedah ranged between 0.07 and 0.60 μSv hr<sup>-1</sup>, which was approximately similar to those recorded in Perak. The high-end reading was attributed to a high concentration of ilmenite in Langkawi Island's Pantai Pasir Hitam. Langkawi Island also has a large formation of acid intrusive.

TABLE 2. T-test of difference between actual and predicted gamma dose rates for different lithology and soil types combinations

| No | Lithology                     | Soil        | t      | Degree of Freedom | Significant (2-tailed) |
|----|-------------------------------|-------------|--------|-------------------|------------------------|
| 1  | Acid Intrusives               | MLD         | -2.855 | 48                | 0.006                  |
| 2  | Acid Intrusives               | RGM-BTG     | -1.531 | 64                | 0.131                  |
| 3  | Acid Intrusives               | SDG-BGR-MUN | -2.101 | 42                | 0.042                  |
| 4  | Acid Intrusives               | STP         | -4.697 | 431               | 0.000                  |
| 5  | Acid Intrusives               | TMG-AKB-LAA | 2.390  | 20                | 0.027                  |
| 6  | Clay & Silt (marine)          | BRH-OCM     | -0.846 | 71                | 0.400                  |
| 7  | Clay & Silt (marine)          | KNJ         | -0.940 | 33                | 0.354                  |
| 8  | Clay & Silt (marine)          | OCM         | 0.726  | 32                | 0.473                  |
| 9  | Clay & Silt (marine)          | SLR-KGG     | -2.238 | 104               | 0.027                  |
| 10 | Clay & Silt (marine)          | SMA-SWN-MNK | 0.201  | 7                 | 0.847                  |
| 11 | Clay & Silt (marine)          | TMG-AKB-LAA | 2.588  | 29                | 0.015                  |
| 12 | Clay, silt, sand & gravel     | HYD-LUS     | -3.945 | 23                | 0.001                  |
| 13 | Clay, silt, sand & gravel     | PET         | -1.350 | 15                | 0.197                  |
| 14 | Clay, silt, sand & gravel     | SMA-SWN-MNK | -0.449 | 103               | 0.654                  |
| 15 | Clay, silt, sand & gravel     | TMG-AKB-LAA | -2.189 | 75                | 0.032                  |
| 16 | Clay, silt, sand & gravel     | ULD         | -0.173 | 13                | 0.866                  |
| 17 | Limestone/Marble              | HYD-LUS     | -2.194 | 70                | 0.032                  |
| 18 | Limestone/Marble              | MLD         | -1.995 | 167               | 0.048                  |
| 19 | Limestone/Marble              | ULD         | -4.731 | 16                | 0.000                  |
| 20 | Peat, humic clay & silt       | BRH-OCM     | 0.790  | 8                 | 0.452                  |
| 21 | Peat, humic clay & silt       | PET         | -2.797 | 89                | 0.006                  |
| 22 | Sand (mainly marine)          | KNJ         | 0.813  | 4                 | 0.462                  |
| 23 | Sand (mainly marine)          | RDU-RSL     | -0.726 | 5                 | 0.501                  |
| 24 | Sandstone/Metasandstone       | RGM-BTG     | -1.274 | 6                 | 0.250                  |
| 25 | Sandstone/Metasandstone       | SDG-BGR-MUN | 1.239  | 8                 | 0.250                  |
| 26 | Sandstone/Metasandstone       | TMG-AKB-LAA | -0.933 | 10                | 0.373                  |
| 27 | Sedimentary/Metamorphic Rocks | CHN         | 0.143  | 6                 | 0.891                  |
| 28 | Sedimentary/Metamorphic Rocks | HYD-LUS     | 1.150  | 5                 | 0.302                  |
| 29 | Sedimentary/Metamorphic Rocks | SDG-BGR-MUN | -3.010 | 125               | 0.003                  |
| 30 | Sedimentary/Metamorphic Rocks | SMA-SWN-MNK | -0.863 | 10                | 0.409                  |
| 31 | Sedimentary/Metamorphic Rocks | TMG-AKB-LAA | -2.369 | 29                | 0.025                  |
| 32 | Sedimentary/Metamorphic Rocks | WATER       | -0.700 | 9                 | 0.501                  |



FIGURE 3. Environmental gamma radiation isodose map of Perak drawn from predicted dose rates multiple correlation regression equation

TABLE 3. Percent distribution of areas in Perak according to four radiation dose rate levels

| Radiation Dose Rates<br>Range (uSv/hr) | Area<br>(km²) | Percentage (%) |
|----------------------------------------|---------------|----------------|
| 0.10 - 0.15                            | 1142.8        | 5.5            |
| 0.15 - 0.20                            | 3510.9        | 17.0           |
| 0.20 - 0.25                            | 3905.1        | 19.0           |
| 0.25 - 0.30                            | 12082.6       | 58.5           |
| Total                                  | 20641.4       | 100.0          |

## CONCLUSION

An attempt was made to propose and validate the use of statistical approach integrated with visualization technique and spatial analysis in GIS environments to map out the environmental gamma radiation isodose map. Results obtained showed that a multiple correlation equation incorporating dose rates based on the area underlying lithological structures and soil types,  $D_{\rm p} = 0.35~D_{\rm L} + 0.82~D_{\rm S} - 0.02$ , with an  $r^2 = 0.736$  may be used to predict and map environmental gamma radiation of the state of Perak.

Validity testing of the equation using t-test showed that 56% of the predicted dose rates were not significantly different from those measured on site. Results obtained also showed the validity of using lithological structures and soil types as parameters in predicting environmental gamma radiation dose rates.

#### ACKNOWLEDGEMENT

The authors thank by the Ministry of Science, Technology and Innovation Malaysia (06-01-02SF0142) for funding this research.

#### REFERENCES

- Azlina, M.J., Ismail, B., Samudi, M.Y., Syed Hakimi Sakuma & Khairuddin, M.K. 2003. Radiological Impact Assessment of Radioactive Minerals of Amang and Ilminite on Future Land use Using RESRAD Computer Code. *Applied Radiation Isotopes* 58: 413-419.
- Ismail, B., Othman M. & Soong H.F. 2000. Effect of tin dragging on the concentrations of arsenic, chromium and radium-226 in Soils and Water. *Jurnal Sains Nuklear Malaysia* 18(2): 111-119.
- Ismail, B., Monawarah, N.M.Y., Hng, P.W., Sharifah Mastura, S.A. & Abdul Hadi, H.S. 2004. Statistical prediction of environmental gamma radiation doses based on geological structure-soil types in Kinta and Batang Padang districts, Perak. Prosiding Seminar Bersama FST, UKM-FMIPA, UNRI ke-3. 223-227.

- Khairuddin, M.K., Hakimi, S.H.S.A. & Omar, M. 2000. Assessment on radiological doses associated with the disposal of amang. *Malaysian Science and Technology Congress*, Symposium B. 16-18 October, Perak, Malaysia.
- Omar, M. & Hassan, A. 2002. The accurance of high concentration of natural radionuclides in black sand of Malaysian beaches. *Jurnal Sains Nuklear Malaysia* 20(1&2): 30-36
- Ramli, A.T., Taufek A.A.R. & Lee, M.H. 2003. Statistical prediction of dose rate based on geological features and soil types in Kota Tinggi district, Malaysia. *Applied Radiation Isotopes* 59: 393-405.
- UNSCEAR. 2000. Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000 Report. New York: United Nations.

School of Applied Physics Faculty of Science and Technology Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia

\*Corresponding author; email: zalinarahmat@gmail.com

Received: 30 April 2009 Accepted: 29 January 2010